Geometria B

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2022/2023

12 gennaio 2024

Ogni risposta deve essere adeguatamente motivata. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni. Il tempo a disposizione è di tre ore.

Attenzione. Il testo è composto da due pagine (la seconda pagina è sul retro di questo foglio).

Esercizio 1. Sia $\tau^1_{\mathcal{E}}$ la topologia euclidea di \mathbb{R} , sia $\mathcal{P}(\mathbb{R})$ l'insieme delle parti di \mathbb{R} e sia η la topologia di \mathbb{R} definita ponendo

$$\eta := \{ \varnothing, \mathbb{R} \} \cup \{ (-a, a) \in \mathcal{P}(\mathbb{R}) : a \in \mathbb{R}, \ a > 0 \}.$$

- (1a) Si dimostri che η soddisfa il primo assioma di numerabilità.
- (1b) Si calcoli la frontiera del singoletto $\{1\}$ in (\mathbb{R}, η) .
- (1c) Si fornisca un esempio di funzione $g: \mathbb{R} \to \mathbb{R}$ tale che $g: (\mathbb{R}, \tau_{\mathcal{E}}^1) \to (\mathbb{R}, \eta)$ è continua ma $g: (\mathbb{R}, \tau_{\mathcal{E}}^1) \to (\mathbb{R}, \tau_{\mathcal{E}}^1)$ non lo è.
- (1d) Sia η^* la topologia prodotto su $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ di η con $\tau^1_{\mathcal{E}}$ e sia Q il quadrato di \mathbb{R}^2 definito ponendo

$$Q := [0,1] \times [0,1].$$

Si dica se il sotto
insieme Q di (\mathbb{R}^2,η^*) è compatto e/o connesso.

SOLUZIONE (1a) Sia $x \in \mathbb{R}$ e sia $\mathcal{V}(x) := \left\{ \left(-|x| - \frac{1}{n}, |x| + \frac{1}{n} \right) \right\}_{n \in \mathbb{N} \setminus \{0\}}$. Osserviamo che ogni elemento $\left(-|x| - \frac{1}{n}, |x| + \frac{1}{n} \right)$ di $\mathcal{V}(x)$ è un intorno di x in (\mathbb{R}, η) in quanto contiene x ed è un aperto di η . Scegliamo arbitrariamente $U \in \mathcal{N}_{\eta}(x)$. Esiste $a \in \mathbb{R}$ con a > 0 tale che $x \in (-a, a) \subset U$. Poiché $x \in (-a, a)$, si ha |x| < a. Dunque esiste $n \in \mathbb{N} \setminus \{0\}$ tale che $x \in (-|x| - \frac{1}{n}, |x| + \frac{1}{n}) \subset (-a, a) \subset U$. Segue che $\mathcal{V}(x)$ è un s.f.i. numerabile di x in (\mathbb{R}, η) .

- (1b) Osserviamo che $(-1,1) \in \eta$ e $\{1\} \cap (-1,1) = \emptyset$. Dunque, se \mathcal{F} denota la frontiera di $\{1\}$ rispetto a η , allora $\mathcal{F} \cap (-1,1) = \emptyset$. Sia $x \in \mathbb{R} \setminus (-1,1)$ e sia V un intorno aperto arbitrario di x in (\mathbb{R}, η) ovvero V = (-a, a) con a > |x|. Segue V interseca $\{1\}$ (perchè $1 \in (-a, a)$) e V interseca anche $\mathbb{R} \setminus \{1\}$ (perchè $0 \in (-a, a)$). Dunque, $x \in \mathcal{F}$. Ciò prova che $\mathcal{F} = \mathbb{R} \setminus (-1, 1)$.
- (1c) Definiamo la funzione $g: \mathbb{R} \to \mathbb{R}$ ponendo g(x) := -1 se x < 0 e g(x) := 1 se $x \ge 0$. La funzione $g: (\mathbb{R}, \tau_{\mathcal{E}}^1) \to (\mathbb{R}, \tau_{\mathcal{E}}^1)$ non è continua in quanto $g^{-1}((0, +\infty)) = [0, +\infty)$ non è un aperto di $\tau_{\mathcal{E}}^1$ (in quanto 0 non è un punto interno a $[0, +\infty)$ in $(\mathbb{R}, \tau_{\mathcal{E}}^1)$). Al contrario, $g: (\mathbb{R}, \tau_{\mathcal{E}}^1) \to (\mathbb{R}, \eta)$ è continua in quanto $g^{-1}((-a, a)) = \emptyset \in \eta$ se $0 < a \le 1$ e $g^{-1}((-a, a)) = \mathbb{R} \in \eta$ se a > 1.
- (1d) La topologia η è meno fine di $\tau_{\mathcal{E}}^1$ in quanto $(-a,a) \in \tau_{\mathcal{E}}^1$ per ogni a > 0. Segue che anche η^* è meno fine del prodotto topologico di $\tau_{\mathcal{E}}^1$ con se stessa (ovvero della topologia euclidea $\tau_{\mathcal{E}}^2$ di \mathbb{R}^2). Equivalentemente, l'applicazione identità id : $(\mathbb{R}^2, \tau_{\mathcal{E}}^2) \to (\mathbb{R}^2, \eta^*)$ è continua. Osserviamo che Q è un sottonsieme compatto e connesso di $(\mathbb{R}^2, \tau_{\mathcal{E}}^2)$ in quanto quadrato topologico del sottospazio topologico compatto e connesso [0,1] di $(\mathbb{R}, \tau_{\mathcal{E}}^1)$ (ciò segue dal teorema di Heine-Borel, dalla caratterizzazione dei sottoinsiemi connessi della retta reale con topologia euclidea e dal fatto che il prodotto topologico preserva sia la compattezza che la connessione). Poiché la compattezza e la connessione si preservano per immagini continue, si ha che $Q = \mathrm{id}(Q)$ è un sottoinsieme sia compatto che connesso di (\mathbb{R}^2, η^*) .

Esercizio 2. Sia \mathbb{R}^2 il piano cartesiano dotato della topologia euclidea e sia \mathbb{S}^1 la circonferenza standard $\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$ di \mathbb{R}^2 dotata della topologia relativa indotta da quella euclidea di \mathbb{R}^2 . Definiamo il punto P di \mathbb{S}^1 , il sottoinsieme \mathbb{S}^1_+ di \mathbb{S}^1 e la relazione di equivalenza \mathcal{R} su \mathbb{S}^1 ponendo

- P := (0, -1),
- $\mathbb{S}^1_+ := \mathbb{S}^1 \cap \{(x,y) \in \mathbb{R}^2 : y \ge 0\},\$
- $[(x,y)]_{\mathcal{R}} := \{P\} \cup \mathbb{S}^1_+$ se $(x,y) \in \{P\} \cup \mathbb{S}^1_+$ e $[(x,y)]_{\mathcal{R}} := \{(x,y)\}$ altrimenti.

Indichiamo con \mathbb{S}^1/\mathcal{R} lo spazio topologico quoziente di \mathbb{S}^1 modulo \mathcal{R} e con $\pi: \mathbb{S}^1 \to \mathbb{S}^1/\mathcal{R}$ la proiezione naturale al quoziente topologico.

- (2a) Si dimostri che lo spazio topologico \mathbb{S}^1/\mathcal{R} è T_2 .
- (2b) Si dica se π è aperta e/o chiusa.

SOLUZIONE (2a) Siano $R, S \in \mathbb{S}^1$ tali che $\alpha := \pi(R) \neq \pi(S) =: \beta$. Distinguiamo due casi. Supponiamo che R = P = (0, -1) e $S \in \mathbb{S}^1 \setminus (\{P\} \cup \mathbb{S}^1_+)$. Osserviamo che $S = (a, b) \in \mathbb{S}^1$ per qualche $a, b \in \mathbb{R}$ con -1 < b < 0. Definiamo:

$$\begin{split} U := \mathbb{S}^1 \cap \left(\{ (x,y) \in \mathbb{R}^2 : y < \frac{-1+b}{2} \} \cup \{ (x,y) \in \mathbb{R}^2 : y > \frac{b}{2} \} \right), \\ V := \mathbb{S}^1 \cap \{ (x,y) \in \mathbb{R}^2 : \frac{-1+b}{2} < y < \frac{b}{2} \}. \end{split}$$

Si osservi che: U è un intorno aperto di $\{P\} \cup \mathbb{S}^1$ in \mathbb{S}^1 (e quindi anche un intorno aperto π -saturo di R in \mathbb{S}^1), V è un intorno aperto π -saturo di S in \mathbb{S}^1 e $U \cap V = \emptyset$. Dunque, $\pi(U)$ è un intorno aperto di G in \mathbb{S}^1 e $\pi(U) \cap \pi(V) = \emptyset$, come desiderato.

Supponiamo ora che $R, S \in \mathbb{S}^1 \setminus (\{P\} \cup \mathbb{S}^1_+)$ con $R \neq S$. Poichè \mathbb{S}^1 è T_2 anche il suo sottospazio topologico aperto $\mathbb{S}^1 \setminus (\{P\} \cup \mathbb{S}^1_+)$ lo è. Esistono dunque due intorni aperti U di R e V di S in $\mathbb{S}^1 \setminus (\{P\} \cup \mathbb{S}^1_+)$ tali che $U \cap V = \emptyset$. Poiché U e V sono aperti anche in \mathbb{S}^1 (perché?) e π -saturi (perché?), si ha che $\pi(U)$ è un intorno aperto di α in \mathbb{S}^1 , $\pi(V)$ è un intorno aperto di β in \mathbb{S}^1 e $\pi(U) \cap \pi(V) = \emptyset$. Questo prova che \mathbb{S}^1/\mathcal{R} è T_2 .

(2b) π non è aperta infatti, se A denota l'aperto $\mathbb{S}^1 \cap \{(x,y) \in \mathbb{R}^2 : y > 0\}$ di \mathbb{S}^1 , allora la π -saturazione $\pi^{-1}(\pi(A))$ di A è uguale a $\pi^{-1}(\pi(A)) = \{P\} \cup \mathbb{S}^1_+$, che non è un aperto di \mathbb{S}^1 (in quanto l'intersezione di ogni palla aperta euclidea di \mathbb{R}^2 centrata in P e di raggio positivo contiene punti di $\mathbb{S}^1 \setminus (\{P\} \cup \mathbb{S}^1_+)$, dunque P non è un punto interno di $\{P\} \cup \mathbb{S}^1_+$ in \mathbb{S}^1).

 π è chiusa in quanto applicazione continua dallo spazio topologico compatto \mathbb{S}^1 (chiuso e limitato di \mathbb{R}^2) nello spazio topologico di Hausdorff \mathbb{S}^1/\mathcal{R} (si veda il punto (2a)).

Esercizio 3. Sia $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ il disco unitario chiuso e sia T il toro ottenuto dal quadrato $Q = [0,1] \times [0,1]$ identificando i lati opposti. Sia $S^1 = \partial D$ e $f: S^1 \to T$ la funzione definita da

$$f(\cos(2\pi t), \sin(2\pi t)) = [(0, t)]$$

(la classe di equivalenza di (0,t) in T). Sia $X = (D \cup T)/\sim$ lo spazio topologico ottenuto dall'unione disgiunta di D e T identificando i punti di $S^1 = \partial D$ con le immagini mediante f:

$$(\cos(2\pi t),\sin(2\pi t))\sim[(0,t)]\quad\text{per ogni }t\in[0,1].$$

- (3a) Si calcoli il gruppo fondamentale di X.
- (3b) Si dica se X è omotopicamente equivalente a una superficie compatta.

SOLUZIONE (3a) La funzione f manda i punti di $S^1 = \partial D$ sui punti di T che corrispondono a quelli di un lato a (verticale) del quadrato. Ne deriva che lo spazio X può essere interpretato come un sottospazio di \mathbb{R}^3 , quello ottenuto dal toro in \mathbb{R}^3 a cui viene unito un disco lungo un meridiano (una sezione del toro solido). Oppure lo spazio X può essere interpretato come il sottospazio di \mathbb{R}^3 ottenuto unendo al toro un disco lungo un parallelo ('tappando' il buco centrale del toro).

Quindi X è omotopicamente equivalente ad una sfera S^2 con due punti identificati (lo si può vedere usando l'equivalenza tra CW-complessi: il disco in X è contraibile). A sua volta tale spazio è omotopicamente equivalente all'unione disgiunta $S^2 \vee S^1$, il cui gruppo fondamentale è isomorfo a quello di S^1 , cioè a \mathbb{Z} . Quindi $\pi(X, x_0) \simeq \mathbb{Z}$.

(3b) No, nessuna superficie topologica compatta ha gruppo fondamentale isomorfo a \mathbb{Z} . Per il teorema di invarianza omotopica, X non può essere omotopicamente equivalente a una superficie compatta.

Esercizio 4. (4a) Mostrare che la funzione $f(z) = \frac{1}{6}z^4 - \frac{1}{2}z^2 + z$ ha solo una radice nel disco unitario aperto $U = \{z \in \mathbb{C} \mid |z| < 1\}$.

(4b) Calcolare il seguente integrale usando il teorema dei residui:

$$I = \int_0^{2\pi} \frac{\sin^2(t)}{2 + \cos(t)} dt.$$

SOLUZIONE (4a) Per il Teorema di Rouché basta confrontare f con g(z)=z sulla circonferenza unitaria |z|=1:

$$|f(z) - g(z)| = \left|\frac{1}{6}z^4 - \frac{1}{2}z^2\right| \le \frac{1}{6}|z|^4 + \frac{1}{2}|z|^2 = \frac{2}{3} < 1 = |g(z)|$$

(4b) La funzione integranda è $Q(\cos(t),\sin(t))$, con $Q(x,y)=y^2/(2+x)$. Sia

$$f(z) = \frac{1}{iz}Q\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right) = \frac{1}{iz}\left(\frac{z-z^{-1}}{2i}\right)^2 \frac{1}{2+\frac{z+z^{-1}}{2}} = \frac{i(z^2-1)^2}{2z^2(z^2+4z+1)}$$

Allora $I = \int_0^{2\pi} f(z)dz$ è $2\pi i$ volte la somma dei residui di f interni al disco unitario. I due poli sono: $z_1 = 0$ (polo doppio di f), e $z_2 = \sqrt{3} - 2$ (polo semplice). I residui di f si calcolano facilmente:

$$Res_{z_1}(f) = -2i, \quad Res_{z_2}(f) = i\frac{(2\sqrt{3}-3)^2}{\sqrt{3}(\sqrt{3}-2)^2} = i\frac{3}{\sqrt{3}} = i\sqrt{3}.$$

Dunque

$$I = 2\pi i \left(-2i + i\sqrt{3}\right) = 2\pi (2 - \sqrt{3}).$$